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There is a book! 

http://bit.ly/designing-event-driven-systems
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Event Driven Architectures
Business Events
Event Sourcing

DDD

Stream 
Processing
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Today’s ecosystems get pretty big

4

• 2.2 trillion messages per day (6 
Petabytes)

• Up to 400 Microservices pre 
cluster.

• 20-200 Brokers per cluster
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Today’s ecosystems get pretty big
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• 1 billion messages per day 
• 20,000 messages per second
• 100 teams
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Stream 
Processing

Event Driven Architectures
Business Events
Event Sourcing

DDD
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KAFKA

Serving
Layer

(Cassandra etc.)

Kafka Streams / 
KSQL

Streaming Platforms

Data is embedded in 
each engine

High Throughput 
Messaging

Clustered 
Java App
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apps_opened

app_crashes

unstable_apps

crashed_per_day 

opened_per_day 

(b) Crashes, 
Per App, Per day

(a) Apps Opened, 
Per App, Per day

(c) Unstable 
Applications

Streaming Pipeline
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KAFKA

Serving
Layer

(Cassandra etc.)

Kafka Streams / 
KSQL

Streaming Platforms

Data is embedded in 
each engine

High Throughput 
Messaging

Clustered 
Java App
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An event log is a simple idea

Messages are added at the end of the log

Old New
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Readers have a position all of their own

Sally
is here

George
is here

Fred
is here

Old New

Scan Scan

Scan
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You can rewind and replay, just like Tivo!

Old New

Sally
is here Scan



13

The hard part: Tying it all together!
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Many ”logs” over many machines

Producing
Services

Kafka

Consuming
Services
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Resistant to Failure

Producing
Services

Kafka

Consuming
Services



16

KAFKA

Serving
Layer

(Cassandra etc.)

Kafka Streams / 
KSQL

Streaming Platforms

Data is embedded in 
each engine

High Throughput 
Messaging

Clustered 
Java App
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Streaming Example

apps_opened opened_per_day
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CREATE TABLE opened_per_day AS
SELECT app_id, count(*)
FROM apps_opened
WINDOW TUMBLING (SIZE 1 DAY)
GROUP BY app_id;

apps_opened opened_per_day
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CREATE TABLE opened_per_day AS
SELECT app_id, count(*)
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apps_opened opened_per_day
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Streaming is manipulating events in flight, 
at scale.
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Stream 
Processing

Event Driven Architectures
Business Events
Event Sourcing

DDD
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EcosystemsApp

Increasingly we build ecosystems
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SOA / Microservices / EDA

Customer
Service

Shipping
Service
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The Problem is DATA
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Most services share the same core facts. 

Catalog

Most services live 
in here



30

Events have two hats

Notification Data 
replication
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Buying an iPad (with REST/RPC)

Submit
Order

shipOrder() getCustomer()

Orders
Service

Shipping
Service

Customer
Service

Webserver
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Events for Notification Only

Message Broker (Kafka)

Submit
Order

Order 
Created

getCustomer()
REST

Notification

Orders
Service

Shipping
Service

Customer
Service

Webserver

KAFKA
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Pluggability

Submit
Order

Order 
Created

Orders
Service

Shipping
Service

Customer
Service

Webserver

KAFKA

Repricing

getCustomer()
REST

Notification
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Events for Data Locality

Customer 
Updated

Submit
Order

Order 
Created

Data is 
replicated

Orders
Service

Shipping
Service

Customer
Service

Webserver

KAFKA
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Events have two hats

Notification Data 
replication
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Stateless / Stateful Stream Processing 
Relates to these hats
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Message Broker (Kafka)

Submit
Order

Order 
Created

getCustomer()

REST/RPC

Orders
Service

Customer
Service

Webserver

KAFKA

KStreams 
Shipping Service

Stateless Stream Processing

Notification
Kafka Steams 

/ KSQL
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Message Broker (Kafka)

Submit
Order

Order 
Created

Orders
Service

Customer
Service

Webserver

KAFKA

KStreams 
Shipping Service

KTable

Customer 
Updated

Stateful Stream Processing

Data 
replication
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Message Broker (Kafka)

Orders 
Stream
(Buffer)

KAFKA

KStreams 
Shipping Service

Customers 
(Buffer All)

Streams & Tables

Join
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KSQL ~ KStreams
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Streaming is about

1. Joining & Operating on 
Streams

2. Joining & Operating on 
Materialized Tables

On Notification

Data Replication
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Kafka: a Streaming Platform

The Log ConnectorsConnectors

Producer Consumer

Streaming Engine
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8 Steps to Streaming Services
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1. Use events to decouple and collaborate
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KAFKA

Order 
Requested

Order 
Validated

Order 
Received

Browser

Webserver

Orders
Service

Event Collaboration

Order 
Completed

CQRS/
Websocket

Notification
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2. Use Connect (& CDC) to evolve away 
from legacy
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KAFKA

Order 
Requested

Order 
Validated

Order 
Received

Browser

Webserver

Orders
Service

Make Legacy Datasets Available via the Log

Order 
Completed

CQRS

Connect

Products
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3. Use the Single Writer Principal



49KAFKA

Order 
Requested

Order 
Validated

Order 
Received

Browser

Webserver

Orders
Service

State changes to a topic owned by one service

Connect

Products

Order 
Completed
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Orders 
Service

Email
Service

T1 T2

T3

T4

REST
Service

T5

Local consistency points in the absence 
of Global Consistency
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4. Use Kafka as a Shared Source of Truth
(Messaging that Remembers)
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KAFKA

Order 
Requested

Order 
Validated

Order 
Received

Browser

Webserver

Orders
Service

Shared Source of Truth

Connect

Products

Order 
Completed Reporting
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KAFKA

Order 
Requested

Order 
Validated

Order 
Received

Browser

Webserver

Orders
Service

Product Catalogue stored in 3 places

Connect

Products

Order 
Completed Reporting

Reporting view 
may be “thinner”
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5. Move Data to Code
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Connect

Order 
Requested

Order 
Validated

Order 
Completed

Order 
Received

Products

Browser

Webserver

Orders
Service Stock

Stock

Materialize Stock ‘View’ Inside Service

KAFKA

Data 
Replication
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Kafka has several features for reducing 
the need to move data on startup

- Standby Replicas
- Disk Checkpoints
- Compacted topics
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6. Write to State Stores, just like a 
local ‘database’, backed up in Kafka
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Connect

Order 
Requested

Order 
Validated

Order 
Completed

Order 
Received

Products

Browser

Webserver

Orders
Service

Reserved Stocks

Stock

Stock

Reserved Stocks

State stores behave like local databases

KAFKA

State Store



60

7. Use Transactions to tie All 
Interactions Together
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Connect

TRANSACTION

Order 
Requested

Order 
Validated

Order 
Completed

Order 
Received

Products

Browser

Webserver

Orders
Service

Reserved Stocks

Stock

Stock

Reserved Stocks

Transactions

KAFKA
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8. Evolve and Grow
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Kafka

KAFKA

Finance

Front Office

Operations

Tiered Contexts 
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Span regions or clouds
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Handle Disconnectedness
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So…
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Stream 
Processing

Optimize for complexity vs optimize for scale

Event Driven 
Architectures
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Events provide the key to evolutionary 
architectures

Notification Data 
replication
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Spectrum of use cases

Finer Grained,
Collaborative,
Connected

Courser Grained,
Non-collaborative,
Disconnected

Notification Data Replication
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Streaming is the 
toolset for dealing with 

events at scale
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• Broadcast events
• Retain them in the log
• Evolve the event-stream with 

streaming functions
• Recasting the event stream into 

views when you need to query.

Event Driven Services
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Find out more

Book: http://bit.ly/designing-event-driven-systems

Software: https://confluent.io/download/

Code: http://bit.ly/kafka-microservice-examples

Twitter: @benstopford


