
1

Building Event Driven Services 
with Apache Kafka, Kafka 
Streams & KSQL
Ben Stopford
@benstopford



2

There is a book! 

http://bit.ly/designing-event-driven-systems



3

Event Driven Architectures
Business Events
Event Sourcing

DDD

Stream 
Processing



4

Today’s ecosystems get pretty big

4

• 2.2 trillion messages per day (6 
Petabytes)

• Up to 400 Microservices pre 
cluster.

• 20-200 Brokers per cluster



5

Today’s ecosystems get pretty big

5

• 1 billion messages per day 
• 20,000 messages per second
• 100 teams



6

Stream 
Processing

Event Driven Architectures
Business Events
Event Sourcing

DDD



7

KAFKA

Serving
Layer

(Cassandra etc.)

Kafka Streams / 
KSQL

Streaming Platforms

Data is embedded in 
each engine

High Throughput 
Messaging

Clustered 
Java App



8

apps_opened

app_crashes

unstable_apps

crashed_per_day 

opened_per_day 

(b) Crashes, 
Per App, Per day

(a) Apps Opened, 
Per App, Per day

(c) Unstable 
Applications

Streaming Pipeline



9

KAFKA

Serving
Layer

(Cassandra etc.)

Kafka Streams / 
KSQL

Streaming Platforms

Data is embedded in 
each engine

High Throughput 
Messaging

Clustered 
Java App



10

An event log is a simple idea

Messages are added at the end of the log

Old New



11

Readers have a position all of their own

Sally
is here

George
is here

Fred
is here

Old New

Scan Scan

Scan



12

You can rewind and replay, just like Tivo!

Old New

Sally
is here Scan



13

The hard part: Tying it all together!



14

Many ”logs” over many machines

Producing
Services

Kafka

Consuming
Services



15

Resistant to Failure

Producing
Services

Kafka

Consuming
Services



16

KAFKA

Serving
Layer

(Cassandra etc.)

Kafka Streams / 
KSQL

Streaming Platforms

Data is embedded in 
each engine

High Throughput 
Messaging

Clustered 
Java App



17

Streaming Example

apps_opened opened_per_day



18

CREATE TABLE opened_per_day AS
SELECT app_id, count(*)
FROM apps_opened
WINDOW TUMBLING (SIZE 1 DAY)
GROUP BY app_id;

apps_opened opened_per_day



19

CREATE TABLE opened_per_day AS
SELECT app_id, count(*)
FROM apps_opened
WINDOW TUMBLING (SIZE 1 DAY)
GROUP BY app_id;

apps_opened opened_per_day



20

CREATE TABLE opened_per_day AS
SELECT app_id, count(*)
FROM apps_opened
WINDOW TUMBLING (SIZE 1 DAY)
GROUP BY app_id;

apps_opened opened_per_day



21

CREATE TABLE opened_per_day AS
SELECT app_id, count(*)
FROM apps_opened
WINDOW TUMBLING (SIZE 1 DAY)
GROUP BY app_id;

apps_opened opened_per_day



22

CREATE TABLE opened_per_day AS
SELECT app_id, count(*)
FROM apps_opened
WINDOW TUMBLING (SIZE 1 DAY)
GROUP BY app_id;

apps_opened opened_per_day



23

CREATE TABLE opened_per_day AS
SELECT app_id, count(*)
FROM apps_opened
WINDOW TUMBLING (SIZE 1 DAY)
GROUP BY app_id;

apps_opened opened_per_day



24

Streaming is manipulating events in flight, 
at scale.



25

Stream 
Processing

Event Driven Architectures
Business Events
Event Sourcing

DDD



26

EcosystemsApp

Increasingly we build ecosystems



27

SOA / Microservices / EDA

Customer
Service

Shipping
Service



28

The Problem is DATA



29

Most services share the same core facts. 

Catalog

Most services live 
in here



30

Events have two hats

Notification Data 
replication



31

Buying an iPad (with REST/RPC)

Submit
Order

shipOrder() getCustomer()

Orders
Service

Shipping
Service

Customer
Service

Webserver



32

Events for Notification Only

Message Broker (Kafka)

Submit
Order

Order 
Created

getCustomer()
REST

Notification

Orders
Service

Shipping
Service

Customer
Service

Webserver

KAFKA



33

Pluggability

Submit
Order

Order 
Created

Orders
Service

Shipping
Service

Customer
Service

Webserver

KAFKA

Repricing

getCustomer()
REST

Notification



34

Events for Data Locality

Customer 
Updated

Submit
Order

Order 
Created

Data is 
replicated

Orders
Service

Shipping
Service

Customer
Service

Webserver

KAFKA



35

Events have two hats

Notification Data 
replication



36

Stateless / Stateful Stream Processing 
Relates to these hats



37

Message Broker (Kafka)

Submit
Order

Order 
Created

getCustomer()

REST/RPC

Orders
Service

Customer
Service

Webserver

KAFKA

KStreams 
Shipping Service

Stateless Stream Processing

Notification
Kafka Steams 

/ KSQL



38

Message Broker (Kafka)

Submit
Order

Order 
Created

Orders
Service

Customer
Service

Webserver

KAFKA

KStreams 
Shipping Service

KTable

Customer 
Updated

Stateful Stream Processing

Data 
replication



39

Message Broker (Kafka)

Orders 
Stream
(Buffer)

KAFKA

KStreams 
Shipping Service

Customers 
(Buffer All)

Streams & Tables

Join



40

KSQL ~ KStreams



41

Streaming is about

1. Joining & Operating on 
Streams

2. Joining & Operating on 
Materialized Tables

On Notification

Data Replication



42

Kafka: a Streaming Platform

The Log ConnectorsConnectors

Producer Consumer

Streaming Engine



43

8 Steps to Streaming Services



44

1. Use events to decouple and collaborate



45
KAFKA

Order 
Requested

Order 
Validated

Order 
Received

Browser

Webserver

Orders
Service

Event Collaboration

Order 
Completed

CQRS/
Websocket

Notification



46

2. Use Connect (& CDC) to evolve away 
from legacy



47
KAFKA

Order 
Requested

Order 
Validated

Order 
Received

Browser

Webserver

Orders
Service

Make Legacy Datasets Available via the Log

Order 
Completed

CQRS

Connect

Products



48

3. Use the Single Writer Principal



49KAFKA

Order 
Requested

Order 
Validated

Order 
Received

Browser

Webserver

Orders
Service

State changes to a topic owned by one service

Connect

Products

Order 
Completed



50

Orders 
Service

Email
Service

T1 T2

T3

T4

REST
Service

T5

Local consistency points in the absence 
of Global Consistency



51

4. Use Kafka as a Shared Source of Truth
(Messaging that Remembers)



52
KAFKA

Order 
Requested

Order 
Validated

Order 
Received

Browser

Webserver

Orders
Service

Shared Source of Truth

Connect

Products

Order 
Completed Reporting



53
KAFKA

Order 
Requested

Order 
Validated

Order 
Received

Browser

Webserver

Orders
Service

Product Catalogue stored in 3 places

Connect

Products

Order 
Completed Reporting

Reporting view 
may be “thinner”



54

5. Move Data to Code



55



56

Connect

Order 
Requested

Order 
Validated

Order 
Completed

Order 
Received

Products

Browser

Webserver

Orders
Service Stock

Stock

Materialize Stock ‘View’ Inside Service

KAFKA

Data 
Replication



57

Kafka has several features for reducing 
the need to move data on startup

- Standby Replicas
- Disk Checkpoints
- Compacted topics



58

6. Write to State Stores, just like a 
local ‘database’, backed up in Kafka



59

Connect

Order 
Requested

Order 
Validated

Order 
Completed

Order 
Received

Products

Browser

Webserver

Orders
Service

Reserved Stocks

Stock

Stock

Reserved Stocks

State stores behave like local databases

KAFKA

State Store



60

7. Use Transactions to tie All 
Interactions Together



61

Connect

TRANSACTION

Order 
Requested

Order 
Validated

Order 
Completed

Order 
Received

Products

Browser

Webserver

Orders
Service

Reserved Stocks

Stock

Stock

Reserved Stocks

Transactions

KAFKA



62

8. Evolve and Grow



63

Kafka

KAFKA

Finance

Front Office

Operations

Tiered Contexts 



64

Span regions or clouds



65

Handle Disconnectedness



66

So…



67

Stream 
Processing

Optimize for complexity vs optimize for scale

Event Driven 
Architectures



68

Events provide the key to evolutionary 
architectures

Notification Data 
replication



69

Spectrum of use cases

Finer Grained,
Collaborative,
Connected

Courser Grained,
Non-collaborative,
Disconnected

Notification Data Replication



70

Streaming is the 
toolset for dealing with 

events at scale



71

• Broadcast events
• Retain them in the log
• Evolve the event-stream with 

streaming functions
• Recasting the event stream into 

views when you need to query.

Event Driven Services



72

Find out more

Book: http://bit.ly/designing-event-driven-systems

Software: https://confluent.io/download/

Code: http://bit.ly/kafka-microservice-examples

Twitter: @benstopford


